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Abstract

Nowadays, consumers look for minimally processed, additive-free food products that maintain
their organoleptic properties. This has led to the development of new technologies for food pro-
cessing. One emerging technology is high hydrostatic pressure, as it proves to be very effective in
prolonging the shelf life of foods without losing its properties. Recent research has involved mod-
elling and simulating the effect of combining thermal and high pressure processes (see [3, 5, 6, 9]).
The focus is mainly on the inactivation of certain enzymes and microorganisms that are harmful to
food. Various mathematical models that study the behaviour of these enzymes and microorganisms
during a high pressure process have been proposed (see [5, 6]). Such models need the temperature
and pressure profiles of the whole process as an input. In this paper we present two dimensional
models, with different kind of boundary conditions, to calculate the temperature profile for solid
type foods. We give an exact solution and propose several simplifications, in both two and one di-
mensions. The temperature profile of these simplified two and one dimensional models is calculated
both numerically and analytically, and the solutions are compared. Our results show a very good
agreement for all the approximations proposed, and so we can conclude that the simplifications
and dimensional reduction are reasonable for certain parameter values, which are specified in this
work.

1 Introduction

Classical industrial food conservation processes are based on thermal treatments, such as pasteuriza-
tion, sterilization and freezing. For classical heat application processes, temperature is in a range of
60 to 120◦C, and the processing time can vary from a few seconds to several minutes. The main aim
of these processes is to inactivate microorganisms and enzymes that are harmful to food, in order to
prolong its shelf life, to maintain or even to improve its natural qualities, and, perhaps most impor-
tantly, to provide consumers with products in good a condition. The problem of processing food via
thermal treatments is that it may loose a significant part of its nutritional and organoleptic properties.
At present, consumers look for minimally processed, additive-free food products that maintain such
properties. Therefore the development of new technologies with lower processing temperatures has
increased notoriously in the past years (see, e.g., [10, 11]). One of the technologies that can be used in
this field is High Pressure (HP) processing, which has turned out to be very effective in inactivating
enzymes and microorganisms in food, while leaving small molecules (such as flavor and vitamins)
intact, and therefore not modifying significantly the organoleptic properties (see, e.g., [1, 12]).
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Two principles underlie the effect of HP: firstly, the Le Chatelier Principle, according to which
any phenomenon (phase transition, chemical reaction, chemical reactivity, change in molecular con-
figuration) accompanied by a decrease in volume will be enhanced by pressure. Secondly, pressure is
instantaneously and uniformly transmitted independently of the size and geometry of the food (iso-
static pressure). This uniformity throughout the sample is one of the main advantages of HP when
compared to thermal processing. Nevertheless, pressurisation (depressurisation) induces a tempera-
ture increase (decrease) due to the work of compression (expansion) inside the food. This change in
temperature must be accounted for in a mathematical model. Furthermore, heat exchange between
the walls of the pressure chamber, the pressure medium, packaging material and the pressurised food
induce a time and space dependent temperature field.

Securing temperature uniformity in HP processed products is crucial for assuring uniform distri-
bution of the pursued pressure effects (e.g. microbial and enzyme inactivation), and the prediction of
thermal history within a product under pressure is essential for optimising and homogenising HP pro-
cess (see Otero et al. [10]). For this reason, research has focused (see Otero et al. [9]) on heat transfer
models that simulate the combination of HP and thermal treatments on food products. Infante et
al. [5] analyse the temperature distribution and investigate its use as an input for the inactivation of
certain enzymes. Both solid- and liquid-type foods are considered. The complexity needed to solve
the models (which include heat and mass transfer and non-constant thermo physical properties) can
be very high. Knoerzer et al. [6] considered a model that predicted flow and temperature fields inside
a pilot scale vessel during the pressure heating, holding and cooling stages, again the resulting model
was very complex and so difficult to analyse. A numerical model for predicting conductive heat trans-
fer during batch HP processing of foods was developed by Denys et al. [3] and tested for a food simile
(agar gel). Nonlinear and non-isotropic thermal properties were used, which also led to a complicated
numerical scheme. Smith et al. [13] presented a generalized enthalpy model for a HP Shift Freezing
process based on volume fractions dependent on temperature and pressure.

In this paper we focus only on solid type foods, with a large filling ratio, where convection effects do
not need to be taken into account. We perform a dimensional analysis which highlights the dominant
terms in the model, and shows that in some cases the equations can be simplified (in dimension) and
yet provide a good approximation. These models are much simpler than those found in the literature
[3, 5, 6], but still have the correct qualitative features, and hence would be very important when
designing suitable industrial equipments and optimizing the processes. Moreover, using the solutions
we propose, there is no need to have an FEM solver in order to simulate the process.

In Section 2 we describe the problem and present the governing equations to calculate the tem-
perature distribution. A dimensional analysis is then performed to simplify the model. Sections 3
and 4 contain a thorough investigation of the complete and simplified models for the pressure up and
pressure hold times, respectively, and we are able to find exact and approximate solutions describing
the whole process. In Section 5 we present some numerical results of a particular process, comparing
all the models to exact and numerical solutions. Section 6 briefly considers an extension to third class
boundary conditions and, finally, in Section 7 we give concluding remarks.

2 Problem Description

When high pressure is applied in food technology, it is necessary to take into account the thermal
effects that are produced by variations of temperature due to the compression/expansion occurring
in the food sample and the pressurizing medium. In practice, the pressure evolution, P (t), is known
as it is imposed by the user and the limits of the equipment. The temperature of the processed food
may change with time and space, therefore we need a heat transfer model capable of predicting the
temperature for the processed food. Following [5, 9], a heat transfer model taking into account only
conduction effects is presented (for models including convection effects see also [5, 9]). As the model
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is both time and spatially dependent, we also introduce a brief description of the domain describing
the high pressure device considered in our simulations.

2.1 Mathematical Model

Ω
Rotate	to	obtain	Ω*

F ΩS ΓrΓ 0
L

H2

-H2 2L

H

-H
sym

Figure 1: Computational domain.

Usually HP experiments on food are carried out in a cylindrical pressure vessel (typically a hollow
steel cylinder) that is filled with the food and the pressurizing fluid. It is common to assume axial
symmetry (see e.g. [3, 5, 6, 9]), due to the characteristics of this kind of processes, which allows the
use of cylindrical coordinates, and to consider a two-dimensional domain with a half cross-section. In
this paper we analyse a simplified geometry with only the food and the surrounding steel (see Figure
1). Other authors (see e.g. [5, 9]) have analysed a more complex geometry that also includes the
pressurizing fluid and the rubber cap of sample holder, and even the carrier (see [6]). Our focus is
on studying a solid type food with a large filling ratio, where the pressure medium represents a low
proportion of the vessel content, and so the pressurizing fluid can be ignored.

The domain in the cylindrical (r, z)-coordinates is the rectangle Ω = [0, L2] × [−H2, H2] defined
by Ω = ΩF ∪ ΩS, where ΩF = [0, L] × [−H,H] is the food domain, and ΩS is the domain of the
steel that surrounds the food. We use Ω∗ to denote the 3D domain generated by rotating Ω along
the axis of symmetry ({0} × (−H2, H2)). The boundary of Ω is denoted by Γ = Γr ∪ Γsym, where
we can distinguish Γr on which the temperature is known, and Γsym that has zero heat flux by axial
symmetry.

For the mathematical modelling two significantly different cases can be studied: solid and liquid
type foods. Since we are only concerned in analysing solid type foods with a large filling ratio, we
only take into account conduction effects (and neglect convection effects). This simplification has been
shown to lead to quite accurate results (see [5, 9]). Thus, when solid type foods are considered, we
start with the heat conduction equation for temperature T (K)

ρCp
∂T

∂t
−∇ · (k∇T ) = β

dP

dt
T in Ω∗ × (0, tf), (1)

where ρ is the density (kg m−3), Cp the specific heat (J kg−1 K−1), k the thermal conductivity (W
m−1 K−1) and tf is the final time (s). The right hand side of equation (1) is the heat production due
to the change of pressure P = P (t) (Pa) applied by the equipment (chosen by the user within the
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machine limitations) and β is the thermal expansion coefficient defined by

β =

{
βF : thermal expansion coefficient (K−1) of the food in Ω∗

F,
0, in the steel domain.

This term results from the following law (see [6])

ΔT

ΔP
=

βTV

MCp
=

βT

ρCp
, (2)

where ΔT denotes the temperature change due to the pressure change ΔP , V is the volume and M
the mass.

By using cylindrical coordinates and taking into account axial symmetry, equation (1) may be
re-written in 2D as

ρ Cp
∂T

∂t
− 1

r

∂

∂r

(
rk

∂T

∂r

)
− ∂

∂z

(
k
∂T

∂z

)
= β

dP

dt
T in Ω× (0, tf). (3)

Equation (3) must be completed with appropriate boundary and initial conditions depending on
the HP machine and the problem we wish to solve. For simplicity we assume that the outer walls of
the domain are kept at a constant temperature Tr, and that the initial temperature T0 is constant in
each region, therefore giving ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∂T

∂r
= 0 on Γsym,

T = Tr on Γr,

T = T0 at t = 0.

(4)

In Section 6 we briefly discuss an extended model with third class boundary conditions. Several
authors have considered different boundary conditions to those described above. Infante et al. [5] and
Otero et al. [9] assumed a boundary was kept at a refrigerated temperature, as well as a boundary
allowing for heat transfer with the room. Denys et al. [3] considered an overall heat transfer coefficient
at the surface of the cylinder to account for heat transfer through the walls of the HP vessel. Although
our conditions (4) may seem overly simplistic from a practical consideration, it has been suggested in
the literature that keeping the walls of machine at a constant temperature may be good for avoiding
heat loss [10]. There can be a problem of heat loss through the wall of the high-pressure vessel,
and by anticipating the temperature increase of the processed product, resulting from compression,
conductive heat transfer and temperature gradients can be avoided [3].

In the following sections we study exact and approximate solutions for the model with first class
boundary conditions. It is convenient to begin by non-dimensionalising the model to highlight whether
any simplifications are possible.

2.2 Dimensional analysis

Given that the pressure function in equation (3) only appears in a derivative form, and that the
pressure applied on these processes is typically a piecewise linear function in time (hence such a
derivative is usually piecewise constant) we do not non-dimensionalise the pressure variable. Instead,
we rewrite the pressure derivative dP

dt (t) as

dP

dt
(t) =

⎧⎨
⎩

γ

tp
, 0 < t ≤ tp,

0, t > tp,
(5)
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where, for the sake of simplicity, we suppose that dP
dt (t) = γ

tp
> 0 (P linear) for all t ∈ [0, tp],

and γ (Pa) is the maximum pressure reached (for the sake of simplicity we assume that atmospheric
pressure is 0 MPa, instead of 0.1 MPa, which is typically the real value). After time tp the pressure
is maintained constant at the maximum value, and therefore the derivative is zero (other cases can
be also studied similarly). The release of pressure that takes place after tf can be modelled with the
same approach. Since it does not introduce any further difficulty we have not considered it here.

Therefore, for 0 < t ≤ tp equation (3) can be written as

ρ Cp
∂T

∂t
− 1

r

∂

∂r

(
rk

∂T

∂r

)
− ∂

∂z

(
k
∂T

∂z

)
= β

γ

tp
T, (6)

and for tp < t ≤ tf the same equation holds, except with the right-hand side equal to zero.
The system is now non-dimensionalised by setting

r̂ =
r

R
, ẑ =

z

Z
, t̂ =

t

τ
, T̂ =

T − Tr

ΔT
,

where ΔT , R, Z and τ are suitable temperature, radius, height and time scales, respectively.
Thus, for 0 < t̂ ≤ tp

τ , equation (6) becomes

ρ Cp ΔT

τ

∂T̂

∂t̂
− kΔT

R2r̂

∂

∂r̂

(
r̂
∂T̂

∂r̂

)
− kΔT

Z2

∂2T̂

∂ẑ2
=

βγΔT

tp
(T̂ +

Tr

ΔT
). (7)

For ease of notation we drop the ˆ notation, and so T , z, r and t are now the non-dimensional variables.
We divide equation (7) by ρCpΔT/τ , resulting in

∂T

∂t
− kτ

R2ρCp

1

r

∂

∂r

(
r
∂T

∂r

)
− kτ

Z2ρCp

∂2T

∂z2
=

βγτ

ρCptp
T +

βγτ

ρCptp

Tr

ΔT
. (8)

The dimensionless groups of parameters in equation (8) are

a =
kτ

R2ρCp
, b =

kτ

Z2ρCp
, c =

βγτ

ρCptp
, d =

βγτ

ρCptp

Tr

ΔT
. (9)

The radius and height scales that we propose come from the dimensions of the food cylinder, giving
R = L and Z = H. Note that we are only considering half of the height of the domain as the z scale
for the sake of simplicity. For the temperature scale we set ΔT = max {|T0 − Tr|, βγT0

ρCp
}, where ρ

and Cp are the density and specific heat of the food sample, respectively. The quantity βγT0

ρCp
is the

maximum increase of temperature in the food sample due to the increase of pressure (according to
(2)). The time scale τ is chosen from equation (8). We wish to investigate what happens when the
pressure is increased and therefore balance the pressure term with the time derivative. This leads to

τ =
ρCptp
βγ

min

{
1,

ΔT

Tr

}
.

The system in non-dimensional form is therefore given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂T

∂t
− a

1

r

∂

∂r

(
r
∂T

∂r

)
− b

∂2T

∂z2
= (cT + d)χ(t) in Ω̂× (0, tf),

∂T

∂r
= 0 on Γ̂sym,

T = 0 on Γ̂r,

T = T ∗
0 at t = 0,

(10)
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where Ω̂ = (0, L2
L )× (−H2

H , H2
H ) is the non-dimensional form of the whole domain Ω. The function χ(t)

is defined as

χ(t) =

{
1, if t ∈ (0, tp),

0, elsewhere.

Note that tp/τ and tf/τ have been redefined as tp and tf for convenience. The non-dimensional initial
value is

T ∗
0 =

T0 − Tr

ΔT
. (11)

It should be pointed out that in (9), b = aR2

Z2 and hence with the chosen scales b = a L2

H2 . This will
mean that if the food sample holder is narrow and tall (which is usually the case for the HP pilot scale
machines), the conduction parameter in the z direction, b, will be smaller than that in the r direction,
a. Thus we wish to investigate whether the heat transfer due to conduction is dominant in the radial
direction over the height direction, for a thin and tall machine. This will be studied in Sections 3.2
and 4.2.

System (10) is set in Ω̂, which involves the two regions to determine the temperature in the food,
TF, and in the steel, TS. Taking into account that parameters c and d defined in (9) are zero in the
steel region, as β = 0, (10) is defined as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂TF

∂t
− aF

1

r

∂

∂r

(
r
∂TF

∂r

)
− bF

∂2TF

∂z2
= (cFTF + dF)χ(t) in Ω̂F × (0, tf),

∂TS

∂t
− aS

1

r

∂

∂r

(
r
∂TF

∂r

)
− bS

∂2TS

∂z2
= 0 in Ω̂S × (0, tf),

∂TF

∂r
= 0,

∂TS

∂r
= 0 on Γ̂sym,

kF
∂TF

∂r
= kS

∂TS

∂r
, TF = TS on Γ̂FS,

TS = 0 on Γ̂r,

TF = T ∗
F0
, TS = T ∗

S0 at t = 0,

(12)

where T ∗
F0

and T ∗
S0

are the non-dimensional initial temperatures in the food and steel, respectively.

Ω̂F = (0, 1) × (−1, 1) is the non-dimensional food region, and Ω̂S = Ω̂ − Ω̂F the steel one. On the
non-dimensional food-steel boundary, Γ̂FS =

[
(0, 1)×{1}]∪[(0, 1)×{−1}]∪[{1}×(−1, 1)

]
, continuity

of the solution and the fluxes has been imposed.
We begin by determining an approximate solution for the steel temperature. By assuming that the

conductivity of steel is much larger than that of the food, we can simplify the flux boundary condition
on Γ̂FS

∂TS

∂r
=

kF
kS

∂TF

∂r
≈ 0, on Γ̂FS. (13)

If we also assume that we are working with a narrow and tall machine, i.e. that L << H, and hence
bS << aS, the equation for the steel reduces to

∂TS

∂t
− aS

1

r

∂

∂r

(
r
∂TF

∂r

)
= 0, in Ω̂S × (0, tf). (14)

Since steel has a high thermal diffusivity, aS, the solution of (14) goes to steady state very rapidly, and
the solution to the steady state problem is zero (using the zero flux and zero temperature boundary
conditions). Hence we can conclude that TS ≈ 0. Then the boundary condition for the food at Γ̂FS

can be approximated by TF ≈ 0.
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Thus, we now only have the temperature in the food problem to solve, and (12) reduces to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂TF

∂t
− aF

1

r

∂

∂r

(
r
∂TF

∂r

)
− bF

∂2TF

∂z2
= (cFTF + dF)χ(t) in (0, 1)× (−1, 1)× (0, tf),

∂TF

∂r
= 0 on r = 0,

TF = 0 on r = 1,

TF = 0 on z = −1,

TF = 0 on z = 1,

TF = T ∗
F0

at t = 0.

(15)

One further simplification of system (15) can be made, and this is to divide the domain in half
at z = 0 and impose a zero flux boundary condition. Due to symmetry we only need to solve the
problem in the upper half of the domain. Finally we have system for TF (that we will simply refer to
as T henceforth)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂T

∂t
− a

1

r

∂

∂r

(
r
∂T

∂r

)
− b

∂2T

∂z2
= (cT + d)χ(t) in (0, 1)× (0, 1)× (0, tf),

∂T

∂r
= 0 on r = 0,

T = 0 on r = 1,

∂T

∂z
= 0 on z = 0,

T = 0 on z = 1,

T = T ∗
0 at t = 0.

(16)

3 Analysis for the pressure up time 0 ≤ t ≤ tp

3.1 Exact solution

An exact solution can be found by solving the 2D system (16) using separation of variables. We can
create a homogeneous problem by setting

T (r, z, t) = u(r, z, t) + v(r, z) + w(z). (17)

Then the problem to solve for u is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
= a

1

r

∂

∂r

(
r
∂u

∂r

)
+ b

∂2u

∂z2
+ cu in (0, 1)× (0, 1)× (0, tp),

∂u

∂r
= 0 on r = 0,

u = 0 on r = 1,

∂u

∂z
= 0 on z = 0,

u = 0 on z = 1,

u = T ∗
0 − v(r, z)− w(z) at t = 0,

(18)
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whilst the problem for v is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 = a
1

r

∂

∂r

(
r
∂v

∂r

)
+ b

∂2v

∂z2
+ cv in (0, 1)× (0, 1)× (0, tp),

∂v

∂r
= 0 on r = 0,

v = −w(z) on r = 1,

∂v

∂z
= 0 on z = 0,

v = 0 on z = 1,

(19)

and the problem for w is

bw′′(z) + cw(z) + d = 0, w′(0) = 0, w(1) = 0. (20)

This has solution

w(z) =
d

c

(
cos(μz)

cosμ
− 1

)
, (21)

where μ =
√

c/b.
We use the method of separation of variables and set v(r, z) = R(r)Z(z). Then the boundary

conditions imply that R′(0) = Z ′(0) = Z(1) = 0. From (19) we deduce that

a
r (R

′(r) + rR′′(r)) + cR(r)

bR(r)
= −Z ′′(z)

Z(z)
= ν2, (22)

for suitable constants ν ∈ R, where (·)′ denotes differentiation with respect to each variable. Solving
the ODE for Z(z) leads to

Zp(z) = AZp cos(νpz), p = 1, 2, . . . , (23)

with AZp ∈ R, and νp = (p− 1/2)π. The solution of the ODE for R(r), after satisfying the boundary
condition R′(0) = 0, is

Rp(r) = ARpJ0(αpr), (24)

where Jn is the Bessel function of the first kind of order n, ARp ∈ R, and

αp =

√
c− ν2pb

a
. (25)

Hence we write

v(r, z) =
∞∑
p=1

ApJ0(αpr) cos(νpz), (26)

and from integrating and applying the orthogonality condition it follows that

Ap = − 2

J0(αp)

∫ 1

0
w(z) cos(νpz) dz, (27)

where w(z) is defined in (21).
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We finally turn to the problem for u in (18) and separate variables by setting u(r, z, t) = R(r)Z(z)Γ(t).
Then the boundary conditions imply that R′(0) = R(1) = Z ′(0) = Z(1) = 0. From (18) we deduce
that now

Γ′(t)
Γ(t)

=
a
r (R

′(r) + rR′′(r))Z(z) + bR(r)Z ′′(z) + cR(r)Z(z)

R(r)Z(z)
= −λ2. (28)

and so the first equation is solved to give Γ(t) = B exp(−λ2t), for suitable constants λ ∈ R. The
solutions of R and Z are found in an identical manner to that described above, and so

Zm(z) = CZm cos(νmz), m = 1, 2, . . . , Rn(r) = CRnJ0(δnr), n = 1, 2, . . . , (29)

where νm = (m− 1/2)π and

δn =

√
c+ λ2

mn − ν2mb

a
. (30)

These are found by solving J0(δn) = 0, in order to satisfy R(0) = 0, and then λmn can be determined
from the formula λmn =

√
aδ2n + bν2m − c.

The combined solution for u is therefore

u(r, z, t) =
∞∑
n=1

∞∑
m=1

DmnJ0(δnr) cos(νmz) exp(−λ2
mnt), (31)

and coefficients Dmn are found using the initial condition in (18). Thus

T ∗
0 − v(r, z)− w(z) =

∞∑
n=1

∞∑
m=1

DmnJ0(δnr) cos(νmz), (32)

where w(z) and v(r, z) are defined in (21) and (26)-(27) respectively. Integrating with respect to r
and z and using the orthogonality conditions leads to

Dmn =
2
∫ 1
0

∫ 1
0 (T ∗

0 − v(r, z)− w(z)) rJ0(δnr) cos(νmz) dr dz∫ 1
0 rJ2

0 (δnr) dr
. (33)

The solutions for u, v and w are then added together to give the final solution for T in (17).

3.2 Approximation ignoring the z-dependence

If we assume that we are modelling a narrow and tall machine, and hence b � a, it is reasonable to
ignore the z dependence in (16) and solve the 1D problem, which is therefore given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂T

∂t
− a

1

r

∂

∂r

(
r
∂T

∂r

)
= (cT + d) in (0, 1)× (0, tp),

∂T

∂r
= 0 on r = 0,

T = 0 on r = 1,

T = T ∗
0 at t = 0.

(34)

We now consider various exact and approximate solutions to this simplified system.
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3.2.1 Separation of variables solution

A separation of variables solution to system (34) can be found following the analysis given in Section
3.1. To create a homogeneous problem we substitute T (r, t) = u(r, t) + v(r) into (34). Then the
problem to solve for u is ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
= a

1

r

∂

∂r

(
r
∂u

∂r

)
+ cu in (0, 1)× (0, tp),

∂u

∂r
= 0 on r = 0,

u = 0 on r = 1,

u = T ∗
0 − v(r) at t = 0,

(35)

whilst the problem for v is

0 =
a

r

(
v′(r) + rv′′(r)

)
+ cv + d, (36)

with v′(0) = 0 and v(1) = 0. This has solution

v(r) = −d

c
+

dJ0(
√

c
ar)

cJ0(
√

c
a)

. (37)

Following the procedure in Section 3.1 a straightforward calculation gives the solution for u as

u(r, t) =
∞∑
n=1

D̄nJ0(δ̄nr) exp(−λ̄2
nt), (38)

where δ̄n ∈ R satisfy J0(δ̄n) = 0, λ̄n =
√
aδ̄2n − c, and coefficients D̄n are given by

D̄n =
2
∫ 1
0 (T ∗

0 − v(r)) rJ0(δ̄nr) dr∫ 1
0 rJ2

0 (δ̄nr) dr
, (39)

with v(r) defined in (37). Finally, the solution T is simply the sum of u and v.

3.2.2 Boundary layer solution

Again the starting point is system (34). Let us assume that, as is true for some practical cases (an
example of which will be shown in Section 5), d = O(1) and b < a � 1. Then ignoring the terms
involving a and b, we find

∂T

∂t
= cT + d (40)

T (0) = T ∗
0 , (41)

which gives the leading order solution

T (t) = −d

c
+

(
T ∗
0 +

d

c

)
exp(ct). (42)

Note that since solution (42) only depends on t it does satisfy the zero flux condition at r = 0, but
it obviously cannot satisfy the zero temperature condition at r = 1. Thus we assume that (42) is
an outer solution, T ≡ Tout(t), and that there is a boundary layer at r = 1. In this region different
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terms will form the dominant balance and so to highlight this we re-scale the problem by introducing
a boundary-layer coordinate as

r̄ =
1− r

δ
, (43)

where δ � 1 is to be determined. This change of variables has the effect of stretching the region near
r = 1 when δ → 0, which in practice means that the boundary-layer problem (also known as inner
problem) is solved on a infinite domain. If we let Tin(r̄, t) denote the solution of the problem when
using the boundary-layer coordinate, then near r = 1 the PDE in (34) becomes

∂Tin

∂t
+

a

δ

1

1− δr̄

∂Tin

∂r̄
− a

δ2
∂2Tin

∂r̄2
= cTin + d. (44)

To bring out the correct balance in the equation, we take δ =
√
a, and so coupled with boundary and

initial conditions the leading order problem is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Tin

∂t
=

∂2Tin

∂r̄2
−√

a
∂Tin

∂r̄
+ cTin + d in (0,∞)× (0, tp),

Tin = 0 on r̄ = 0,

Tin → Tout(t) as r̄ → ∞,

Tin = T ∗
0 at t = 0,

(45)

where Tout(t) is the outer solution given in (42). For convenience we subtract off the outer solution to
give a new variable which decays to zero as r̄ → ∞. Thus, if we define

Tin(r̄, t) = Tout(t) + F (r̄, t), (46)

the system to solve for F reduces to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂F

∂t
=

∂2F

∂r̄2
−√

a
∂F

∂r̄
+ cF in (0,∞)× (0, tp),

F = −Tout(t) on r̄ = 0,

F → 0 as r̄ → ∞,

F = 0 at t = 0.

(47)

It is first convenient to transform the PDE in (47) into a standard heat equation by setting

F (r̄, t) = exp

(√
a r̄

2
+ ct− at

4

)
G(r̄, t). (48)

Then (47) becomes

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂G

∂t
=

∂2G

∂r̄2
in (0,∞)× (0, tp),

G = −Tout(t) exp(−ct+ at
4 ) on r̄ = 0,

G → 0 as r̄ → ∞,

G = 0 at t = 0.

(49)
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At first glance it appears that this system can be solved using Laplace transforms. However, the
resulting transformed solution is not easy to invert using standard tables and so the solution would
have to be given as a complex integral. To avoid this we instead use Fourier sine transforms, which is
appropriate because there is a fixed boundary condition at r̄ = 0. Given a function f(x), 0 ≤ x < ∞,
the Fourier sine transform pair is defined as

f̂(ω) =
2

π

∫ ∞

0
f(x) sin(ωx) dx, f(x) =

∫ ∞

0
f̂(ω) sin(ωx) dω. (50)

Now if

Ĝ(ω, t) =
2

π

∫ ∞

0
G(r̄, t) sin(ωr̄) dr̄, (51)

then the PDE in (49) becomes

∂Ĝ

∂t
+ ω2Ĝ = −2ωTout(t) exp

(
at
4 − ct

)
π

. (52)

Note that when differentiating Ĝ with respect to r twice, we have used the additional condition ∂G
∂r̄ → 0

as r̄ → ∞, which follows from matching with the outer solution, that only depends on t.
The initial condition in (49) implies that Ĝ(ω, 0) = 0 and so equation (52) has solution

Ĝ(ω, t) =
2ωd

πc(ω2 + a/4− c)

[
exp(at/4− ct)− exp(−ω2t)

]− 2ω(T ∗
0 + d/c)

π(ω2 + a/4)

[
exp(at/4)− exp(−ω2t)

]
,

(53)
after substituting Tout(t) from (42). Finally the solution for G is given by

G(r̄, t) =

∫ ∞

0
Ĝ(ω, t) sin(ωr̄) dω, (54)

and so

Tin(r̄, t) = Tout(t) + exp

(√
a r̄

2
− at

4
+ ct

)
G(r̄, t). (55)

After adding the inner and outer solutions and subtracting the common part, we can write down the
final solution in the whole domain as

T (r, t) = −d

c
+

(
T ∗
0 +

d

c

)
exp(ct) + exp

(
1− r

2
+ ct− at

4

)
G

(
1− r√

a
, t

)
. (56)

3.3 Approximation including the z-dependence

Since the approximate solutions in Section 3.2 only depend on r and t it is clear that the boundary
condition at z = 1 is not satisfied (unlike the zero flux boundary condition at z = 0, which is satisfied).
We need to consider a boundary layer analysis near z = 1, and therefore follow a similar analysis to
that given in Section 3.2.2. Thus we set z = 1 − √

bz̄ and denote Tin(r, z̄, t) as the inner solution.
Then, for leading order terms, system (16) becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Tin

∂t
− a

1

r

∂

∂r

(
r
∂Tin

∂r

)
− ∂2Tin

∂z̄2
= (cTin + d) in (0, 1)× (0,∞)× (0, tp),

∂Tin

∂r
= 0 on r = 0,

Tin = 0 on r = 1,

Tin → Tout as z̄ → ∞,

Tin = 0 on z̄ = 0,

Tin = T ∗
0 at t = 0,

(57)
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where Tout is the outer solution of the PDE, i.e. the solution that we solved in Section 3.2. We will
use the series solution found in Section 3.2.1, namely

Tout(r, t) = v(r) +
∞∑
n=1

D̄nJ0(δ̄nr) exp(−λ̄2
nt), (58)

where v(r) is given in (37). Whilst we could use the boundary layer solution (56), this form is simpler
as it avoids a solution involving several integrals.

Using the same approach as in Section 3.2.2, if we set

Tin(r, z̄, t) = Tout(r, t) + F (r, z̄, t), (59)

then the PDE in (57) becomes

∂F

∂t
= a

1

r

∂

∂r

(
r
∂F

∂r

)
+

∂2F

∂z̄2
+ cF, (60)

which follows since Tout(r, t) satisfies the outer PDE. If, as at the start of Section 3.2.2, we assume
a � 1 and then ignore this term here, system (57) reduces to the following 1D problem:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂F

∂t
− ∂2F

∂z̄2
= cF in (0,∞)× (0, tp),

F → 0 as z̄ → ∞,

F = h(t) on z̄ = 0,

F = 0 at t = 0,

(61)

where for convenience we have defined h(t) = −Tout(r, t) (considering r as a constant value and the
solving the system for each r). Again using Fourier sine transforms we can find the exact solution to
(61). This is given by

F (z̄, t) =

∫ ∞

0

(
2

π

∫ t

0
h(t′) exp((ω2 − c)(t′ − t)) dt′

)
sin(ωz̄) dω, (62)

or

F (z̄, t) =

∫ ∞

0
(f1(ω, t) + f2(ω, t)) sin(ωz̄) dω, (63)

where

f1(ω, t) = − 2ωv(r)

π(c− ω2)

[
exp((c− ω2)t)− 1

]
, (64)

f2(ω, t) =
2

π

∞∑
n=0

D̄nJ0(δ̄nr)

[
exp(−λ̄2

nt)− exp((c− ω2)t)
]

λ̄2
n + c− ω2

. (65)

Thus, the inner solution is simply the sum of F and Tout. After adding the inner and outer solutions
and subtracting the common part, we can write down the final solution in the whole domain as

T (r, z, t) = −d

c
+

dJ0(
√

c
ar)

cJ0(
√

c
a)

+
∞∑
n=1

D̄nJ0(δ̄nr) exp(−λ̄2
nt) +

∫ ∞

0
(f1(ω, t) + f2(ω, t)) sin

(
1− z√

b
ω

)
dω.

(66)
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4 Analysis for the pressure hold time tp < t ≤ tf

For t ≥ tp, heating no longer occurs due to the increase in pressure, and hence the right-hand side of
the PDE in system (16) is zero. Rescaling time as ζ = t− tp, we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂T

∂ζ
− a

1

r

∂

∂r

(
r
∂T

∂r

)
− b

∂2T

∂z2
= 0 in (0, 1)× (0, 1)× (0, tf − tp),

∂T

∂r
= 0 on r = 0,

T = 0 on r = 1,

∂T

∂z
= 0 on z = 0,

T = 0 on z = 1,

T = Tup(r, z) at ζ = 0,

(67)

where Tup(r, z) is the solution T (r, z, t) of the problem (solved in Section 3.1) in the time interval
0 < t < tp, at time t = tp, namely

Tup(r, z) =
d

c

(
cos(γz)

cos γ
− 1

)
+

∞∑
p=1

ApJ0(αpr) cos(νpz) +
∞∑
n=1

∞∑
m=1

DmnJ0(δnr) cos(νmz) exp(−λ2
mntp).

(68)
We now describe how to extend the analysis given above, for the pressure up time, to the system in
the pressure hold time.

4.1 Exact solution

The analysis here is similar to that described in Section 3.1, but is in fact simpler because the right-
hand side of the PDE is zero and so the problem is already homogeneous. Thus the solution is

T (r, z, t) =
∞∑
j=1

∞∑
k=1

EkjJ0(ηjr) cos(νkz) exp(−ϕ2
kj(t− tp)), (69)

where ηj ∈ R satisfy J0(ηj) = 0, νk = (k − 1/2)π, and ϕkj =
√
aη2j + bν2k . To determine coefficients

Ekj we use the initial condition in (67), where Tup is defined in (68). Thus, after integrating and
applying the orthogonality conditions, we have

Ekj =
2
∫ 1
0

∫ 1
0 Tup(r, z)rJ0(ηjr) cos(νkz) dr dz∫ 1

0 rJ2
0 (ηjr) dr

. (70)

4.2 Approximation ignoring the z-dependence

Again, assuming b << a, we ignore the z-dependence in (67) and solve the 1D problem, which is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂T

∂ζ
− a

1

r

∂

∂r

(
r
∂T

∂r

)
= 0 in (0, 1)× (0, tf − tp),

∂T

∂r
= 0 on r = 0,

T = 0 on r = 1,

T = Tup(r) at ζ = 0,

(71)
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where Tup(r) is the 1D pressure up solution given in Section 3.2.1 at t = tp, i.e.

Tup(r) = −d

c
+

dJ0(
√

c
ar)

cJ0(
√

c
a)

+
∞∑
n=1

D̄nJ0(δ̄nr) exp(−λ̄2
ntp). (72)

A separation of variables solution to system (71) can be found using the same analysis as in
previous sections. Thus we simply quote the solution as

T (r, t) =
∞∑
j=1

ĒjJ0(η̄jr) exp(−ϕ̄2
j (t− tp)), (73)

where η̄j ∈ R satisfy J0(η̄j) = 0, and ϕ̄j =
√
a η̄j . To determine coefficients Ēj we use the initial

condition in (71). After integrating and applying the orthogonality condition, we have

Ēj =

∫ 1
0 Tup(r)J0(η̄jr)r dr∫ 1

0 rJ2
0 (η̄jr) dr

, (74)

where Tup(r) is defined in (72).
A boundary layer solution in 1D, like the one described in Section 3.2.2, was not given here because

a boundary layer near r = 1 is no longer expected. This is due to the fact that the PDE in (71) has
a right-hand side equal to zero, so now the a term becomes more important than in the pressure up
time, where the c and d terms were dominant.

4.3 Approximation including the z-dependence

Following Section 3.3 we consider a boundary layer analysis near z = 1 by setting z = 1 − √
bz̄ and

denote Tin(r, z̄, ζ) as the inner solution. Then system (67) becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Tin

∂ζ
− a

1

r

∂

∂r

(
r
∂Tin

∂r

)
− ∂2Tin

∂z̄2
= 0 in (0, 1)× (0,∞)× (0, tf − tp),

∂Tin

∂r
= 0 on r = 0,

Tin = 0 on r = 1,

Tin → Tout(r, t) as z̄ → ∞,

Tin = 0 on z̄ = 0,

T = Tup(r) at ζ = 0,

(75)

where Tup(r) is given in (72), and Tout(r, t) in (73). Following the same setps as in Section 3.3 the
solution is found to be

T (r, z, t) = Tout(r, t) +
∞∑
j=1

∫ ∞

0

2ω

π
ĒjJ0(η̄jr)

[
exp(−ϕ̄2

jζ)− exp(−ω2ζ)
]

ϕ̄2
j − ω2

sin

(
1− z√

b
ω

)
. (76)

5 Numerical tests

For the numerical tests we consider similar dimensions to the ones of the pilot unit (ACB GEC
Alsthom, Nantes, France), used by other authors [5, 9], but we ignore the pressurizing fluid domain
and the rubber cap and focus on the food and surrounding steel domains. The dimensions for these
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are given in Table 1. Following [5, 9] we have chosen tylose (a food simile) as an example of solid type
food. In order to reduce computational complexity, and following [5], we assume that the thermo-
physical properties of the food sample are constant (and set them to their mean value in the range
of temperature and pressure considered in the process). The thermo-physical properties of the steel
remain constant during the whole process.

The initial temperature is T0 = 313 K = 39.85◦C in both the food and the steel, and the pressure
is linearly increased during the first 183 seconds until it reaches 360 MPa. Then the pressure is
maintained constant until the final time (900 seconds) is reached. Thus, the pressure generated by
the equipment satisfies P (0) = 0 and

dP

dt
(t) =

⎧⎨
⎩

360

183
· 106 Pa s−1, 0 < t ≤ 183,

0 Pa s−1, 183 < t < 900.
(77)

ρF 1006 ρS 7833 CpF 3780 CpS 465
kF 0.49 kS 55 βF 4.217 · 10−4 γ 360 · 106
L 0.045 L2 0.09 H 0.091 H2 0.327
T0 313 Tr 292.3 tp 183 tf 900

Table 1: Parameter values for numerical simulations. The food properties are those of tylose. Data is obtained
from [2, 5, 8].

Following the procedure described in Section 2.2, and considering the values given in Table 1, the
scales used to non-dimensionalise the variables are: R = 0.045 m, Z = 0.091 m, ΔT = 20.7 K and
τ = 325 s. The values of a, b, c and d are shown in Table 2 (we point out that they satisfy the
assumptions considered in the previous sections). The non-dimensional initial condition is T ∗

0 = 1.

a b c d

Ω̂F 0.02 0.005 0.07 1

Ω̂S 2.423 0.593 0 0

Table 2: Non-dimensional parameter values for system (10).

In Sections 3 and 4 we have given an exact solution and several simplifications to our problem. In
order to check the validity of such simplifications we compare them to the reference models, which are
considered to be the exact solution given in Section 3.1 for the pressure up time, and the one given in
Section 4.1 for the pressure hold. Also a numerical solution in both 1D (using radial coordinates) and
2D (using cylindrical coordinates) is calculated using the FEM solver COMSOL Multiphysics 3.5a. In
[5, 9] similar, although more complex, models were solved numerically using this commercial software,
and validated by comparing to experimental data. Our model is a simplification of ones proposed
in those papers, and not based on a real experiment, so we choose a numerical solution solved with
COMSOL rather than a comparison to experimental data.

All of our solutions were calculated using MATLAB 7.12.0.635 (R2011a) without requiring an
FEM solver. For the separation of variables solutions, the transcendental equation J0(x) = 0, which
appears in Sections 3.1, 3.2.1, 4.1 and 4.2, was solved using this software, whose roots correspond
to δn, δ̄n, ηj , η̄j for each section, respectively. Coefficients D̄n and Ēj that appear in equations (39)
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and (74), respectively, were calculated using integration formulas for Bessel functions. Coefficients
Dmn and Ekj in equations (33) and (70) were calculated using a double trapezoidal rule for for the
sake of simplicity, although the same rules for Bessel functions plus some for trigonometric functions
could have been used for calculating it directly, or any other quadrature rule could also be used. We
truncated each infinite sum and took as many terms as necessary to obtain a solution which did not
vary to 16 decimal places from the solution with one term less. Thus, for equations (31) and (38) we
took N = 20 terms, and for (69) and (72), J = 20 terms. For equations (26), P = 35 terms, for (31),
M = 35 terms and for (69), K = 35 terms.

For the boundary layer solutions described in Sections 3.2.2 and 3.3, in which there are a semi-
infinite integrals (namely (54) and (66)) to calculate, we followed [7], where a method to approximate
integrals of the form

∫∞
a f(x)φ(x) dx is proposed, with φ(x) being either sin(ωx) or cos(ωx) is pro-

posed. The integral is approximated by a numerical integration over a finite domain (a, b), leaving a
truncation error equal to the tail integration

∫∞
b f(x)φ(x) dx, plus the discretization error. Luo and

Shevchenko [7] describe a very simple end-point correction to approximate the tail integration, which
reduces significantly the truncation error, and which we have used in our calculations.

5.1 Results

Figure 2 shows the dimensionless temperature profiles given by the models presented in Section 3 for
pressure up time. We have plotted the results of the 2D models at a fixed time (t = 0.12 on the
left, t = 0.56 = tp on the right) for different heights and for all r. As can be seen for all heights
z ∈ (0, 0.95) the solution is almost the same, and also matches perfectly with the 1D results from
Sections 3.2.1 and 3.2.2. Then for the rest of heights up to z = 1, where the boundary layer is, it
is clear that the solutions differ from the 1D model for the points very close to the top right corner
of the 2D domain. There is a slight difference between the boundary layer solution given in Section
3.3 and the exact solution given in Section 3.1, especially near r = 1. This is because in (60) we are
ignoring the a term, and therefore no heat conduction in the r direction is taken into account in this
solution. Including this term leads to a problem which is more difficult to solve than the original one,
and so the approximation would no longer be a simplification.

Figure 3 shows the dimensionless temperature profiles given by the models presented in Section 4
for pressure hold time. In this case the plots are at times t = 1.50 on the left and t = 2.76 = tf on the
right. For all heights z ∈ (0, 0.94) the solution is almost the same and again matches perfectly with
the 1D results from Section 4.2. In this case, however, for the rest of height up until z = 1 which are
in the boundary layer, the approximation proposed in Section 4.3 differs more from the exact solution
given in Section 4.1 than in the pressure up time case. This is because the conduction term in the
r direction was ignored again, and, because there is no source term for the pressure hold case, this
difference is more noticeable. We remark again that this slight discrepancy is for points that are very
close to the top of the 2D domain.

Looking at the results we can see that the temperature profiles inside the food can be very well
approximated by the 1D solution at nearly all heights inside the machine, except those very near the
top, where a boundary layer exists. We point out that these are the results for the upper half of the
domain (after our simplification in Section 2.2) and therefore by symmetry the same results hold for
the lower half of the machine, i.e. the temperature profile for all heights except those near the bottom
boundary can be very well approximated by a 1D model.

6 Extension to third class boundary conditions

We now consider a model where only the food domain is included, and assume that there is heat
exchange between the walls of the food domain and the outside. Hence now the boundary and initial
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conditions for (3) are ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂T

∂r
= 0 on Γsym,

k
∂T

∂n
= h(Tr − T ) on Γexc = ΓF \ Γsym,

T = T0 at t = 0,

(78)

where ΓF is the boundary of ΩF, h (W m−2 K−1) is the heat transfer coefficient with the environment,
and n is the outward unit normal vector on the boundary of the domain, Γexc.

Proceeding as in Section 2.2, we now have the following non-dimensional system to solve⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂T

∂t
− a

1

r

∂

∂r

(
r
∂T

∂r

)
− b

∂2T

∂z2
= (cT + d)χ(t) in (0, 1)× (0, 1)× (0, tf),

∂T

∂r
= 0 on r = 0,

εr
∂T

∂r
= −T on r = 1,

∂T

∂z
= 0 on z = 0,

εz
∂T

∂z
= −T on z = 1,

T = T ∗
0 at t = 0,

(79)

where εr =
k
hR and εz =

k
hZ .

A similar analysis to that given for system (16), as described in Sections 3 and 4, can also be
carried out for (79). Here we present only the results for the one dimensional approximation, ignoring
the z-dependence for pressure up time.

6.1 Approximation ignoring the z-dependence for pressure up time

Following 3.2, if we assume that we are modelling a narrow and tall machine, and hence b � a, it is
reasonable to ignore the z dependence in (79) and solve the 1D problem, which is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂T

∂t
− a

1

r

∂

∂r

(
r
∂T

∂r

)
= (cT + d) in (0, 1)× (0, tp),

∂T

∂r
= 0 on r = 0,

εr
∂T

∂r
= −T on r = 1,

T = T ∗
0 at t = 0.

(80)

We now consider an exact and an approximate solution to this simplified system.

6.1.1 Separation of variables 1D

The analysis here is similar to that described in Section 3.2.1 but with a different boundary condition.
To create a homogeneous problem we substitute T (r, t) = u(r, t) + v(r) into (80). Then the problem
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to solve for u is ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
= a

1

r

∂

∂r

(
r
∂u

∂r

)
+ cu in (0, 1)× (0, tp),

∂u

∂r
= 0 on r = 0,

εr
∂T

∂r
= −T on r = 1,

u = T ∗
0 − v(r) at t = 0,

(81)

whilst the problem for v is

0 =
a

r

(
v′(r) + rv′′(r)

)
+ cv + d, (82)

with v′(0) = 0 and εrv
′(1) = −v(1). This has solution

v(r) =
d

c

[ J0(
√

c
ar)

J0(
√

c
a)− εr

√
c
aJ1(

√
c
a)

− 1
]
. (83)

A straightforward calculation gives the solution for u as

u(r, t) =
∞∑
n=1

¯̄DnJ0(
¯̄δnr) exp(−¯̄λ2

nt), (84)

where ¯̄δn ∈ R satisfy
εr
¯̄δJ1(

¯̄δn) = J0(
¯̄δn), (85)

¯̄λn =

√
a¯̄δ2n − c and coefficients ¯̄Dn are given by

¯̄Dn =
2
∫ 1
0 (T ∗

0 − v(r)) rJ0(
¯̄δnr) dr∫ 1

0 rJ2
0 (
¯̄δnr) dr

, (86)

with v(r) defined in (83). Finally, the solution T is simply the sum of u and v.

6.1.2 Boundary layer in r

To consider a boundary layer in r we start with system (80). Analogously to Section 3.2.2 we assume
d = O(1) and b < a � 1. Then ignoring the terms involving a and b, we again have at leading order
the outer solution given by (42), i.e.

T (t) = −d

c
+

(
T ∗
0 +

d

c

)
exp(ct). (87)

It is clear that since solution (87) only depends on t it does satisfy the zero flux condition at r = 0,
but it obviously cannot satisfy the third class boundary condition at r = 1. Therefore we consider a
boundary layer near r = 1. Following the exact steps as in Section 3.2.2, we introduce the boundary-
layer coordinate given by (43), take δ =

√
a to bring out the correct balance in the equation, which

at leading order is ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Tin

∂t
=

∂2Tin

∂r̄2
−√

a
∂Tin

∂r̄
+ cTin + d in (0,∞)× (0, tp),

∂Tin

∂r̄
=

δ

εr
Tin on r̄ = 0,

Tin → Tout(t) as r̄ → ∞,

Tin = T ∗
0 at t = 0,

(88)
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where Tout(t) is the outer solution given by (87). We define

Tin(r̄, t) = Tout(t) + exp

(√
a r̄

2
+ ct− at

4

)
G(r̄, t), (89)

and so the system for G reduces to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂G

∂t
=

∂2G

∂r̄2
in (0,∞)× (0, tp),

−∂G

∂r̄
+ αG = h(t) on r̄ = 0,

G → 0 as r̄ → ∞,

G = 0 at t = 0,

(90)

where

α =

√
a

εr
−

√
a

2
, h(t) = −

√
a

εr
Tout(t) exp (−ct+ at/4). (91)

From [4] we know that (90) can be solved by taking the following integral transform

Ĝ(ω, t) =

∫ ∞

0
G(r̄, t)K(ω, r̄) dr̄, (92)

where K(ω, r̄) is the solution of

d2R(r̄)

d2r̄2
+ ω2R(r̄) = 0,

αR(r̄)− dR(r̄)

dr̄
= 0 on r̄ = 0,

(93)

namely

K(ω, r̄) =

√
2

π

[ω cos(ωr̄) + α sin(ωr̄)√
ω2 + α2

]
. (94)

Applying the integral transform (92) to the PDE in (90) gives∫ ∞

0

∂G(r̄, t)

∂t
K(ω, r̄) dr̄ =

∫ ∞

0

∂2G(r̄, t)

∂r̄2
K(ω, r̄) dr̄. (95)

Now ∫ ∞

0

∂2G(r̄, t)

∂r̄2
K(ω, r̄) dr̄ = −K

∂G

∂r̄

∣∣∣∣
r̄=0

+
dK

dr̄
G

∣∣∣∣
r̄=0

− ω2

∫ ∞

0
G(r̄, t)K(ω, r̄) dr̄. (96)

From (90) and (93) it follows that at r̄ = 0

−K
∂G

∂r̄
+

dK

dr̄
G = −K(αG− h(t)) + αKG = h(t)K(ω, 0). (97)

Hence ∫ ∞

0

∂2G(r̄, t)

∂r̄2
K(ω, r̄) dr̄ = −ω2Ĝ+ h(t)K(ω, 0) = −ω2Ĝ+

√
2

π
h(t)

ω√
ω2 + α2

, (98)

and so the PDE in (90) becomes

∂Ĝ

∂t
+ ω2Ĝ =

√
2

π
h(t)

ω√
ω2 + α2

, (99)

21



0 0.2 0.4 0.6 0.8 1
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

r

T

1D models − Pressure up with 3rd class BC

(−) Sep Var 1D (*) Comsol 1D (o) Bdy layer 1D

t=0.01 t=0.12 t=0.23 t=0.34

t=0.45 t=t
p
=0.56

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

r

T

1D models − Pressure up with 1st class BC

(−) Sep Var 1D

(*) Comsol 1D

(o) Boundary layer 1D

t=0.01 t=0.12 t=0.23 t=0.34

t=t
p
=0.56

t=0.45

Figure 4: Dimensionless temperature profiles calculated with different methods in 1D for the third class (left)

and first class (right) boundary conditions.

where h(t) and α are defined in (91). The initial condition in (90) implies Ĝ(ω, 0) = 0, and so equation
(99) has solution

Ĝ(ω, t) =

√
2

π

[ ω
√
ad

εrc
√
ω2 + α2

exp(at/4− ct)− exp(−ω2t)

ω2 + a/4− c
− ω

√
a(T ∗

0 + d/c)

εr
√
ω2 + α2

exp(at/4)− exp(−ω2t)

ω2 + a/4

]
,

(100)
after substituting Tout(t) from (87). Finally the solution for G (see [4]) is

G(r̄, t) =

√
2

π

[ ∫ ∞

0
Ĝ(ω, t)

ω√
ω2 + α2

cos(ωr̄) dω +

∫ ∞

0
Ĝ(ω, t)

α√
ω2 + α2

sin(ωr̄) dω
]
, (101)

and Tin(r̄, t) is given by (89). After adding the inner and outer solutions ans subtracting the common
part, we can write down the final solution in the whole domain as

T (r, t) = −d

c
+

(
T ∗
0 +

d

c

)
exp(ct) + exp

(
1− r

2
+ ct− at

4

)
G

(
1− r√

a
, t

)
. (102)

6.2 Results

We perform numerical tests for the problem with third class boundary conditions, using the same
data and parameters as in Section 5. The heat transfer coefficient used in the tests is h = 28 W
m−2 K−1. Figure 4 shows the dimensionless temperature profiles that result from solving the pressure
up time problem in 1D for boundary conditions of the third and first class (Sections 6.1 and 3.2,
respectively). The temperature has been calculated using separation of variables in 1D (Sections
6.1.1 and 3.2.1, respectively), by a boundary layer in 1D approximation (Sections 6.1.2 and 3.2.2,
respectively). Observe that both solutions match perfectly for all times, and also to the 1D COMSOL
solution, which has been taken as a reference model. For the first class boundary conditions, an exact
solution in 2D was given in Section 3.1. However, for the third class boundary condition we do not
give all the possible solutions, as it is analogous to the ones derived throughout Sections 3 and 4, and
we just concentrate on the 1D pressure up case.
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7 Conclusions

We have presented heat transfer models for predicting temperature profiles inside a solid type food
undergoing HP treatment. Two different kinds of boundary conditions have been considered depending
on whether only the food holder is taken into account, or whether the surrounding steel is included.
We have given a thorough analysis describing an exact 2D solution as well as several simplifications in
both 2D and 1D. It has been shown that for the case of a tall and narrow HP machine, the temperature
profile inside the food is very well approximated by a 1D model, except at points very close to the
top and bottom boundaries. The reduction to 1D is extremely useful from a computational point of
view because optimisation of these processes is easier, thus leading to faster simulations. In addition,
the simplified model can help to calculate thermo-physical properties as a function of pressure, via
inverse problems, which is an increasing need nowadays for food technologists. From an experimental
point of view, results can also be used to determine where to place the thermocouples inside the food
sample in order to measure the temperature experimentally. Finally, we point out that the solutions
given here do not require the use of a “black-box” FEM solver and our approximations allow us to
qualitatively describe the physical features involved
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Santander: Doctores y Tecnólogos”. Also, SLM acknowledges the support of MACSI, the Mathe-
matics Applications Consortium for Science and Industry (www.macsi.ul.ie), funded by the Science
Foundation Ireland Mathematics Initiative Grant 06/MI/005.

References

[1] J. C. Cheftel. Review: high-pressure, microbial inactivation and food preservation. Food Sci.
Tech. Int., 1(2-3): 75–90, 1995.

[2] A. C. Cleland and R. L. Earle. Assessment of freezing time prediction methods. J. Food Sci.,
49: 1034–1042, 1995.

[3] S. Denys, L. R. Ludikhuyze, A. M. Van Loey, and M. E. Hendrickx. Modeling conductive heat
transfer and process uniformity during batch high-pressure processing of foods. Biotechnol. Prog.,
16: 92–101, 2000.
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